Evolutionary conservation of redundancy between a diverged pair of forkhead transcription factor homologues.

نویسندگان

  • L Molin
  • A Mounsey
  • S Aslam
  • P Bauer
  • J Young
  • M James
  • A Sharma-Oates
  • I A Hope
چکیده

The Caenorhabditis elegans gene pes-1 encodes a transcription factor of the forkhead family and is expressed in specific cells of the early embryo. Despite these observations suggesting pes-1 to have an important regulatory role in embryogenesis, inactivation of pes-1 caused no apparent phenotype. This lack of phenotype is a consequence of genetic redundancy. Whereas a weak, transitory effect was observed upon disruption of just T14G12.4 (renamed fkh-2) gene function, simultaneous disruption of the activity of both fkh-2 and pes-1 resulted in a penetrant lethal phenotype. Sequence comparison suggests these two forkhead genes are not closely related and the functional association of fkh-2 and pes-1 was only explored because of the similarity of their expression patterns. Conservation of the fkh-2/pes-1 genetic redundancy between C. elegans and the related species C. briggsae was demonstrated. Interestingly the redundancy in C. briggsae is not as complete as in C. elegans and this could be explained by alterations of pes-1 specific to the C. briggsae ancestry. With overlapping function retained on an evolutionary time-scale, genetic redundancy may be extensive and expression pattern data could, as here, have a crucial role in characterization of developmental processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Caenorhabditis elegans gene pes-1 encodes a transcription factor of the forkhead family and is expressed in specific cells of the early embryo. Despite these observations suggesting pes-1 to have an important regulatory role in embryogenesis, inactivation of pes-1

The C. elegans genome is essentially completely sequenced and contains approximately 19,000 protein coding genes (C. elegans sequencing consortium, 1998). This figure is much higher than the number of essential genes predicted by classical genetic studies (Sulston et al., 1992; Waterston and Sulston, 1995; Johnsen and Baillie, 1997). Reverse genetic analysis by double-stranded RNA mediated inte...

متن کامل

Phenotypic Covariance of Longevity, Immunity and Stress Resistance in the Caenorhabditis Nematodes

BACKGROUND Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin-like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the ...

متن کامل

Functional conservation of Rel binding sites in drosophilid genomes.

Evolutionary constraints on gene regulatory elements are poorly understood: Little is known about how the strength of transcription factor binding correlates with DNA sequence conservation, and whether transcription factor binding sites can evolve rapidly while retaining their function. Here we use the model of the NFKB/Rel-dependent gene regulation in divergent Drosophila species to examine th...

متن کامل

Comparative genomic analysis reveals the evolutionary conservation of Pax gene family.

The Pax gene family encodes a group of transcription factors whose evolution has accompanied the major morphological and functional innovations of vertebrate species. The evolutionary conservation throughout diverse lineages of metazoan and the functional importance in development rendered Pax family an ideal system to address the relationship inside Chordata phylum. In the present study, we se...

متن کامل

The Yeast Forkhead Transcription Factors Fkh1 and Fkh2 Regulate Lifespan and Stress Response Together with the Anaphase-Promoting Complex

Forkhead box O (FOXO) transcription factors have a conserved function in regulating metazoan lifespan. A key function in this process involves the regulation of the cell cycle and stress responses including free radical scavenging. We employed yeast chronological and replicative lifespan assays, as well as oxidative stress assays, to explore the potential evolutionary conservation of function b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 127 22  شماره 

صفحات  -

تاریخ انتشار 2000